Exercise 1.32

Vector $\overrightarrow{\boldsymbol{A}}$ is in the direction 34.0° clockwise from the $-y$-axis. The x-component of $\overrightarrow{\boldsymbol{A}}$ is $A_{x}=-16.0 \mathrm{~m}$. (a) What is the y-component of $\overrightarrow{\boldsymbol{A}}$? (b) What is the magnitude of $\overrightarrow{\boldsymbol{A}}$?

Solution

Draw the vector \mathbf{A} in the $x y$-plane and decompose it into components along the x - and y-axes.

The triangle involving the magnitudes of these vectors is shown below.

Use trigonometry to determine $\left|\mathbf{A}_{y}\right|$ and the magnitude $|\mathbf{A}|$.

$$
\begin{aligned}
\tan 34^{\circ}=\frac{16.0}{\left|\mathbf{A}_{y}\right|} \quad \rightarrow \quad\left|\mathbf{A}_{y}\right|=\frac{16.0}{\tan 34^{\circ}} \approx 23.7 \mathrm{~m} \\
\sin 34^{\circ}=\frac{16.0}{|\mathbf{A}|} \quad \rightarrow \quad|\mathbf{A}|=\frac{16.0}{\sin 34^{\circ}} \approx 28.6 \mathrm{~m}
\end{aligned}
$$

Since \mathbf{A}_{y} points down in the negative y-direction, there's a minus sign in the y-component of \mathbf{A} : $A_{y} \approx-23.7 \mathrm{~m}$.

$$
\mathbf{A}_{y}=\left\langle 0, A_{y}\right\rangle \approx\langle 0,-23.7\rangle \mathrm{m}
$$

